奥数网奥数无锡站 > 小升初 > 小升初真题 > 正文

小升初奥数经典试题解答参考

来源:无锡奥数网整理 2011-07-12 18:35:55

 经典试题具有一定的代表性,面对小升初的听题海战,我们还是从经典试题入手吧。

    1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。

  解:一把椅子的价钱:

  288÷(10-1)=32(元)

  一张桌子的价钱:

  32×10=320(元)

  答:一张桌子320元,一把椅子32元。

  2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

  解:45+5×3

  =45+15

  =60(千克)

  答:3箱梨重60千克。

  3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。

  解:4×2÷4

  =8÷4

  =2(千米)

  答:甲每小时比乙快2千米。

  4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

  解:0.6÷[13-(13+7)÷2]

  =0.6÷[13-20÷2]

  =0.6÷3

  =0.2(元)

  答:每支铅笔0.2元。

  5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。

  解:下午2点是14时。

  往返用的时间:14-8=6(时)

  两地间路程:(40+45)×6÷2

  =85×6÷2

  =255(千米)

  答:两地相距255千米。

  6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)]千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快(4.5-3.5)千米,由此便可求出追赶的时间。

  解:第一组追赶第二组的路程:

  3.5-(4.5-3.5)=3.5-1=2.5(千米)

  第一组追赶第二组所用时间:

  2.5÷(4.5-3.5)=2.5÷1=2.5(小时)

  答:第一组2.5小时能追上第二小组。

  7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。

  解:乙仓存粮:

  (32.5×2+5)÷(4+1)

  =(65+5)÷5

  =70÷5

  =14(吨)

  甲仓存粮:

  14×4-5

  =56-5

  =51(吨)

  答:甲仓存粮51吨,乙仓存粮14吨。

  8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。

  解:乙每天修的米数:

  (400-10×4)÷(4+5)

  =(400-40)÷9

  =360÷9

  =40(米)

  甲乙两队每天共修的米数:

  40×2+10=80+10=90(米)

  答:两队每天修90米。

  9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。

  解:每把椅子的价钱:

  (455-30×6)÷(6+5)

  =(455-180)÷11

  =275÷11

  =25(元)

  每张桌子的价钱:

  25+30=55(元)

  答:每张桌子55元,每把椅子25元。

  10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。

  解:(7+65)×[40÷(75-65)]

  =140×[40÷10]

  =140×4

  =560(千米)

  答:甲乙两地相距560千米。

  11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。

  解:(20×250-4400)÷(10+20)

  =600÷120

  =5(箱)

  答:损坏了5箱。

  12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。

  解:4×2÷(12-4)

  =4×2÷8

  =1(时)

  答:第二中队1小时能追上第一中队。

  13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。

  解:原计划烧煤天数:

  (1500+1000)÷(1500-1000)

  =2500÷500

  =5(天)

  这堆煤的重量:

  1500×(5-1)

  =1500×4

  =6000(千克)

  答:这堆煤有6000千克。

  14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。

  解:每本练习本比每支铅笔贵的钱数:

  0.45÷(8-5)=0.45÷3=0.15(元)

  8个练习本比8支铅笔贵的钱数:

  0.15×8=1.2(元)

  每支铅笔的价钱:

  (3.8-1.2)÷(5+8)=2.6÷13=0.2(元)

  也可以用方程解:

  设一枝铅笔X元,则一本练习本为元。

  8X+5×=3.8-0.45

  64X+19-25X=30.4-3.6

  39X=7.8

  X=0.2

  答:每支铅笔0.2元。

  15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。

  解:卡车的数量:

  360÷[10×6÷(8-6)]

  =360÷[10×6÷2]

  =360÷30

  =12(辆)

  客车的数量:

  360÷[10×6÷(8-6)+10]

  =360÷[30+10]

  =360÷40

  =9(辆)

  答:可用卡车12辆,客车9辆。

  16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。

  解:已修的天数:

  (720×3-1200)÷80

  =960÷80

  =12(天)

  公路全长:

  (720+80)×12+1200

  =800×12+1200

  =9600+1200

  =10800(米)

  答:这条公路全长10800米。

  17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。

  解:12个纸箱相当木箱的个数:

  2×(12÷3)=2×4=8(个)

  一个木箱装鞋的双数:

  1800÷(8+4)=18000÷12=150(双)

  一个纸箱装鞋的双数:

  150×2÷3=100(双)

  答:每个纸箱可装鞋100双,每个木箱可装鞋

  150双

  18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。

  解:水泥用完的天数:

  120÷(30×2-40)=120÷20=6(天)

  水泥的总袋数:

  30×6=180(袋)

  沙子的总袋数:

  180×2=360(袋)

  答:运进水泥180袋,沙子360袋。

  19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。

  解:每个茶杯的价钱:

  90÷(4×5+10)=3(元)

  每个保温瓶的价钱:

  3×4=12(元)

  答:每个保温瓶12元,每个茶杯3元。

  20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。

  解:第一个加数:

  572÷(10+1)=52

  第二个加数:

  52×10=520

  答:这两个加数分别是52和520。

  21、想:由已知条件可知,16千克和9千克的差正好是半桶油的重量。9千克是半桶油和桶的重量,去掉半桶油的重量就是桶的重量。

  解:9-(16-9)

  =9-7

  =2(千克)

  答:桶重2千克。

  22、想:由已知条件可知,10千克与5.5千克的差正好是半桶油的重量,再乘以2就是原来油的重量。

  解:(10-5.5)×2=9(千克)

  答:原来有油9千克。

  23、想:由已知条件可知,桶里原有水的(5-2)倍正好是(22-10)千克,由此可求出桶里原有水的重量。

  解:(22-10)÷(5-2)

  =12÷3

  =4(千克)

  答:桶里原有水4千克。

  24、想:从“小红给小华5本,两人故事书的本数就相等”这一条件,可知小红比小华多(5×2)本书,用共有的36本去掉小红比小华多的本数,剩下的本数正好是小华本数的2倍。

  解:小华有书的本数:

  (36-5×2)÷2=13(本)

  小红有书的本数:

  13+5×2=23(本)

  答:原来小红有23本,小华有13本。

  25、想:由已知条件知,5桶油共取出(15×5)千克。由于剩下油的重量正好等于原来2桶油的重量,可以推出(5-2)桶油的重量是(15×5)千克。

  解:15×5÷(5-2)=25(千克)

  答:原来每桶油重25千克。

  26、想:把一根木料锯成3段,只锯出了(3-1)个锯口,这样就可以求出锯出每个锯口所需要的时间,进一步即可以求出锯成5段所需的时间。

  解:9÷(3-1)×(5-1)=18(分)

  答:锯成5段需要18分钟。

  27、想:女工比男工少35人,男、女工各调出17人后,女工仍比男工少35人。这时男工人数是女工人数的2倍,也就是说少的35人是女工人数的(2-1)倍。这样就可求出现在女工多少人,然后再分别求出男、女工原来各多少人。

  解:35÷(2-1)=35(人)

  女工原有:

  35+17=52(人)

  男工原有:

  52+35=87(人)

  答:原有男工87人,女工52人。

  28、想:由每小时行12千米,5小时到达可求出两地的路程,即返回时所行的路程。由去时5小时到达和返回时多用1小时,可求出返回时所用时间。

  解:12×5÷(5+1)=10(千米)

  答:返回时平均每小时行10千米。

  29、想:由题意知,狗跑的时间正好是二人的相遇时间,又知狗的速度,这样就可求出狗跑了多少千米。

  解:18÷(5+4)=2(小时)

  8×2=16(千米)

  答:狗跑了16千米。

  30、想:由条件知,(21+20+19)表示三种球总个数的2倍,由此可求出三种球的总个数,再根据题目中的条件就可以求出三种球各多少个。

  解:总个数:

  (21+20+19)÷2=30(个)

  白球:30-21=9(个)

  红球:30-20=10(个)

  黄球:30-19=11(个)

  答:白球有9个,红球有10个,黄球有11个。

  31、想:根据题意,33米比18米长的米数正好是3根细钢管的长度,由此可求出一根细钢管的长度,然后求一根粗钢管的长度。

  解:(33-18)÷(5-2)=5(米)

  18-5×2=8(米)

  答:一根粗钢管长8米,一根细钢管长5米。

  32、想:由题意知,实际10天比原计划10天多生产水泥(4.8×10)吨,而多生产的这些水泥按原计划还需用(12-10)天才能完成,也就是说原计划(12-10)天能生产水泥(4.8×10)吨。

  解:4.8×10÷(12-10)=24(吨)

  答:原计划每天生产水泥24吨。

  33、想:由题意知唱歌的70人中也有跳舞的,同样跳舞的30人中也有唱歌的,把两者相加,这样既唱歌又跑舞的就统计了两次,再减去参加表演的80人,就是既唱歌又跳舞的人数。

  解:70+30-80

  =100-80

  =20(人)

  答:既唱歌又跳舞的有20人。

  34、想:参加语文竞赛的36人中有参加数学竞赛的,同样参加数学竞赛的38人中也有参加语文竞赛的,如果把两者加起来,那么既参加语文竞赛又参加数学竞赛的人数就统计了两次,所以将参加语文竞赛的人数加上参加数学竞赛的人数再加上一科也没参加的人数减去全班人数就是双科都参加的人数。

  解:36+38+5-59=20(人)

  答:双科都参加的有20人。

  35、想:由“2张桌子和5把椅子的价钱相等”这一条件,可以推出4张桌子就相当于10把椅子的价钱,买4张桌子和6把椅子共用640元,也就相当于买16把椅子共用640元。

  解:5×(4÷2)+6=16(把)

  640÷16=40(元)

  40×5÷2=10O(元)

  答:桌子和椅子的单价分别是100元、40元。

  36、想:5年前父亲的年龄是(45-5)岁,儿子的年龄是(45-5)÷4岁,再加上5就是今年儿子的年龄。

  解:(45-5)÷4+5

  =10+5

  =15(岁)

  答:今年儿子15岁。

  37、想:“如果从甲桶倒入乙桶18千克,两桶油就一样重”可推出:甲桶油的重量比乙桶多(18×2)千克,又知“甲桶油重是乙桶油重的4倍”,可知(18×2)千克正好是乙桶油重量的(4-1)倍。

  解:18×2÷(4-1)=12(千克)

  12×4=48(千克)

  答:原来甲桶有油48千克,乙桶有油12千克。

  38、想:根据题意,20题全部答对得100分,答错一题将失去(5+3)分,而不答仅失去5分。小丽共失去(100-79)分。再根据(100-79)÷8=2(题)……5(分),分析答对、答错和没答的题数。

  解:(5×20-75)÷8=2(题)……5(分)

  20-2-1=17(题)

  答:答对17题,答错2题,有1题没答。

  39、想:“从两车头相遇到两车尾相离”,两车所行的路程是两车身长之和,即(240+264)米,速度之和为(20+16)米。根据路程、速度和时间的关系,就可求得所需时间。

  解:(240+264)÷(20+16)

  =504÷30

  =14(秒)

  答:从两车头相遇到两车尾相离,需要14秒。

  40、想:火车通过隧道是指从车头进入隧道到车尾离开隧道,所行的路程正好是车身与隧道长度之和。

  解:(600+1150)÷700

  =1750÷700

  =2.5(分)

  答:火车通过隧道需2.5分。

  41、想:在每分走50米的到校时间内按两种速度走,相差的路程是(60×2)米,又知每秒相差(60-50)米,这就可求出小明按每分50米的到校时间。

  解:60×2÷(60-50)=12(分)

  50×12=600(米)

  答:小明从家里到学校是600米。

  42、想:由已知条件可知,二人第一次相遇时,乙比甲多跑一周,即600米,又知乙每分钟比甲多跑(400-300)米,即可求第一次相遇时经过的时间。

  解:600÷(400-300)

  =600÷100

  =6(分)

  答:经过6分钟两人第一次相遇

  43、想:由“只把宽增加2厘米,面积就增加12平方厘米”,可求出原来的长是:(12÷2)厘米,同理原来的宽就是(8÷2)厘米,求出长和宽,就能求出原来的面积。

  解:(12÷2)×(8÷2)=24(平方厘米)

  答:这个长方形纸板原来的面积是24平方厘米。

  44、想:用去的钱数除以3就是1千克苹果和1千克梨的总钱数。从这个总钱数里去掉1千克苹果的钱数,就是每千克梨的钱数。

  解:(20-7.4)÷3-2.4

  =12.6÷3-2.4

  =4.2-2.4

  =1.8(元)

  答:每千克梨1.8元。

  45、想:由题意知,甲乙速度和是(135÷3)千米,这个速度和是乙的速度的(2+1)倍。

  解:135÷3÷(2+1)=15(千米)

  15×2=30(千米)

  答:甲乙每小时分别行30千米、15千米。

  46、想:两种球的数目相等,黑球取完时,白球还剩12个,说明黑球多取了12个,而每次多取(8-5)个,可求出一共取了几次。

  解:12÷(8-5)=4(次)

  8×4+5×4+12=64(个)

  或8×4×2=64(个)

  答:一共取了4次,盒子里共有64个球。

  47、想:1路和2路下次同时发车时,所经过的时间必须既是12分的倍数,又是18分的倍数。也就是它们的最小公倍数。

  解:12和18的最小公倍数是36

  6时+36分=6时36分

  答:下次同时发车时间是上午6时36分。

  48、想:父、子年龄的差是(45-15)岁,当父亲的年龄是儿子年龄的11倍时,这个差正好是儿子年龄的(11-1)倍,由此可求出儿子多少岁时,父亲是儿子年龄的11倍。又知今年儿子15岁,两个岁数的差就是所求的问题。

  解:(45-15)÷(11-1)=3(岁)

  15-3=12(年)

  答:12年前父亲的年龄是儿子年龄的11倍。

  49、想:根据题意,可以将题中的条件转化为:平均分给2名同学、3名同学、4名同学、5名同学都少一支,因此,求出2、3、4、5的最小公倍数再减去1就是要求的问题。

  解:2、3、4、5的最小公倍数是60

  60-1=59(支)

  答:这盒铅笔最少有59支。

  50、想:根据只把底增加8米,面积就增加40平方米,可求出原来平行四边形的高。根据只把高增加5米,面积就增加40平方米,可求出原来平行四边形的底。再用原来的底乘以原来的高就是要求的面积。

  解:(40÷5)×(40÷8)=40(平方米)

  答:平行四边形地原来的面积是40平方米。