奥数网奥数无锡站 > 小升初 > 小升初经验 > 正文

高效学习奥数知识点的四步骤

来源:无锡奥数网整理 2011-11-14 16:28:10

  对于奥数的几大知识点,要做到掌握并能熟练的应用,奥数知识点的学习分为四大步骤:理解知识点,学习代表性科目,找出解题关键,解决该类型的重点扩展难题。

  第一步:初步理解该知识点的定理及性质

  1、提出疑问:什么是抽屉原理?

  2、抽屉原理有哪些内容呢?

  【抽屉原理1】:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件;

  【逆抽屉原理】:从n个抽屉中拿出多于n件的物品,那么至少有2个物品来至于同一个抽屉。

  【抽屉原理2】:将多于mn件的物品任意放到n个抽

  屉中,那么至少有一个抽屉中的物品不少于(m+1)件。

  第二步:学习最具有代表性的题目

  【例1】证明:任取8个自然数,必有两个数的差是7的倍数

  【例2】对于任意的五个自然数,证明其中必有3个数的和能被3整除.

  【总结】以上的例题都是在考察抽屉原理在整除与余数问题中的运用。以上的题目我们都是运用抽屉原理一来解决的。

  第三步:找出解决此类问题的关键。

  【例3】从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

  【例4】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。

  【例5】从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。

  {1,2,4,8,16}

  {3,6,12},{5,10,20}

  {7,14},{9,18}

  {11},{13},{15},{17},{19}。

  【总结】根据题目条件灵活构造“抽屉”是解决这类题目的关键。

  第四步:重点解决该类型的拓展难题

  我们先来做一个简单的铺垫题

  【铺垫】请说明,任意3个自然数,总有2个数的和是偶数。

  【例6】请说明,对于任意的11个正整数,证明其中一定有6个数,它们的和能被6整除。

  【总结】上面两道题目用到了抽屉原理中的“双重抽屉”与“合并抽屉”,都是在原有典型抽屉原理题目的基础上进行的拓展。

 

编辑推荐

编辑推荐:

无锡小初学校大汇总,地址邮编联系方式全都有!

大桥中学历年小升初考试真题及答案汇总

无锡小升初热门重点中学基本信息

e度无锡常住居民安家帖——请各位乡亲们领取安家费

2012无锡小升初交流群聊精华:更新至11月11日

无锡小升初择校经验大集合

无锡大桥中学小升初信息大集合