奥数网奥数无锡站 > 小升初 > 小升初资料推荐 > 正文

无锡小升初奥数常考知识点(2)

来源:无锡奥数网整理 2012-04-16 17:33:06

十一、定义新运算

  基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

  基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

  关键问题:正确理解定义的运算符号的意义。

  注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。

  ②每个新定义的运算符号只能在本题中使用。

  十二、数列求和

  等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

  基本概念:首项:等差数列的第一个数,一般用a1表示;

  项数:等差数列的所有数的个数,一般用n表示;

  公差:数列中任意相邻两个数的差,一般用d表示;

  通项:表示数列中每一个数的公式,一般用an表示;

  数列的和:这一数列全部数字的和,一般用Sn表示.

  基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

  基本公式:通项公式:an = a1+(n-1)d;

  通项=首项+(项数一1) ×公差;

  数列和公式:sn,= (a1+ an)×n÷2;

  数列和=(首项+末项)×项数÷2;

  项数公式:n= (an+ a1)÷d+1;

  项数=(末项-首项)÷公差+1;

  公差公式:d =(an-a1))÷(n-1);

  公差=(末项-首项)÷(项数-1);

  关键问题:确定已知量和未知量,确定使用的公式;

  十三、二进制及其应用

  十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

  =An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

  注意:N0=1;N1=N(其中N是任意自然数)

  二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

  (2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

  +……+A3×22+A2×21+A1×20

  注意:An不是0就是1。

  十进制化成二进制:

  ①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

  ②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

  十四、加法乘法原理和几何计数

  加法原理:如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2....... +mn种不同的方法。

  关键问题:确定工作的分类方法。

  基本特征:每一种方法都可完成任务。

  乘法原理:如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2....... ×mn种不同的方法。

  关键问题:确定工作的完成步骤。

  基本特征:每一步只能完成任务的一部分。

  直线:一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

  直线特点:没有端点,没有长度。

  线段:直线上任意两点间的距离。这两点叫端点。

  线段特点:有两个端点,有长度。

  射线:把直线的一端无限延长。

  射线特点:只有一个端点;没有长度。

  ①数线段规律:总数=1+2+3+…+(点数一1);

  ②数角规律=1+2+3+…+(射线数一1);

  ③数长方形规律:个数=长的线段数×宽的线段数:

  ④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数

  十五、质数与合数

  质数:一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

  合数:一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

  质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

  分解质因数:把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

  分解质因数的标准表示形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1

  求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

  互质数:如果两个数的最大公约数是1,这两个数叫做互质数。

  十六、约数与倍数

  约数和倍数:若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

  公约数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

  最大公约数的性质:

  1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

  2、 几个数的最大公约数都是这几个数的约数。

  3、 几个数的公约数,都是这几个数的最大公约数的约数。

  4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

  例如:12的约数有1、2、3、4、6、12;

  18的约数有:1、2、3、6、9、18;

  那么12和18的公约数有:1、2、3、6;

  那么12和18最大的公约数是:6,记作(12,18)=6;

  求最大公约数基本方法:

  1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

  2、短除法:先找公有的约数,然后相乘。

  3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

  公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

  12的倍数有:12、24、36、48……;

  18的倍数有:18、36、54、72……;

  那么12和18的公倍数有:36、72、108……;

  那么12和18最小的公倍数是36,记作[12,18]=36;

  最小公倍数的性质:

  1、两个数的任意公倍数都是它们最小公倍数的倍数。

  2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

  求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

  最后,预祝无锡小升初的同学们都能取得优异的成绩,进入理想的中学!

编辑推荐:

2012年无锡小升初信息大集合

小编解读:无锡中考政策对小升初选择的影响

小升初模拟题:英语填空专项练习及详解

2012年无锡小升初数学复习资料归纳总结

2012年无锡小升初奥数知识点汇总